Region-Based Structure Preserving Nonnegative Matrix Factorization for Hyperspectral Unmixing

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonnegative Matrix Factorization With Data-Guided Constraints For Hyperspectral Unmixing

Abstract: Hyperspectral unmixing aims to estimate a set of endmembers and corresponding abundances in pixels. Nonnegative matrix factorization (NMF) and its extensions with various constraints have been widely applied to hyperspectral unmixing. L1/2 and L2 regularizers can be added to NMF to enforce sparseness and evenness, respectively. In practice, a region in a hyperspectral image may posses...

متن کامل

Locality Preserving Nonnegative Matrix Factorization

Matrix factorization techniques have been frequently applied in information processing tasks. Among them, Non-negative Matrix Factorization (NMF) have received considerable attentions due to its psychological and physiological interpretation of naturally occurring data whose representation may be parts-based in human brain. On the other hand, from geometric perspective the data is usually sampl...

متن کامل

Neighborhood Preserving Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) has been widely used in computer vision and pattern recognition. It aims to find two nonnegative matrices whose product can well approximate the nonnegative data matrix, which naturally leads to parts-based and non-subtractive representation. In this paper, we present a neighborhood preserving nonnegative matrix factorization (NPNMF) for dimensionality red...

متن کامل

Area-Correlated Spectral Unmixing Based on Bayesian Nonnegative Matrix Factorization

To solve the problem of the spatial correlation for adjacent areas in traditional spectral unmixing methods, we propose an area-correlated spectral unmixing method based on Bayesian nonnegative matrix factorization. In the proposed method, the spatial correlation property between two adjacent areas is expressed by a priori probability density function, and the endmembers extracted from one of t...

متن کامل

Hyperspectral Unmixing via $L_{1/2}$ Sparsity-Constrained Nonnegative Matrix Factorization

Hyperspectral unmixing is a crucial preprocessing step for material classification and recognition. In the last decade, nonnegative matrix factorization (NMF) and its extensions have been intensively studied to unmix hyperspectral imagery and recover the material end-members. As an important constraint for NMF, sparsity has been modeled making use of the L1 regularizer. Unfortunately, the L1 re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

سال: 2017

ISSN: 1939-1404,2151-1535

DOI: 10.1109/jstars.2016.2621003